3Pembagian Wilayah Laut Indonesia. Sejumlah warga Sebatik Mengail ikan di dermaga perbatasan yang hany berjarak 1 kilo dari ambang batas laut antara Indonesia Malaysia Sabtu (03/09). Berbagai ikan seperti ikan tembang, ikan ekor kuning dan ikan kulli bisa warga Sebatik dapatkan dengan sangat mudah. (Kontributor Nunukan, Sukoco) Kelas 8 SMPPOLA BILANGAN DAN BARISAN BILANGANRagam Pola BilanganDengan memerhatikan bola-bola yang dibatasi garis merah, tentukan a. banyak bola pada pola ke-100. b. jumlah bola hingga pola Pola BilanganPOLA BILANGAN DAN BARISAN BILANGANBILANGANMatematikaRekomendasi video solusi lainnya0222Pola ABBCCCDDDDABBCCCDDDDABBCCCDDDD berulang sampai tak h...0559Dalam suatu gedung pertunjukkan terdapat 9 baris kursi. P...0336Diketahui vektor a = -4 6 5 dan vektor b =2 -1 -3 te...Teks videoDi sini ada soal dengan memperhatikan bola-bola yang dibatasi garis merah. Tentukan banyak bola pada pola ke-100 lalu jumlah bola pada pola ke-100 disini kita tulis dunia yang diketahuinya diketahui pada kotak 1 ada 1 bola lalu pada kotak 2 ada 8 bola pada kotak 3 terdapat 16 bola lah untuk mengerjakan ini kita harus tahu dulu nih aturan pembentukan bilangannya dari kotak 1 atau ini kita sebut salah satu pola dua pola 3 dari pola satu-satunya = 1sama dengan 1 lalu pada pola yang kedua Eh satunya = 1 + 8 jadi 9 lalu pada S3 = 16 + jumlah Sebelumnya kan 9 berarti ditambah 9 sama dengan 25 Nah S1 S2 S3 ini kok kita lihat dia juga membentuk suatu pola kita tulis ya di sini S1 S2 S3 eh 1 1 9 25 Nah 1925 ini adalah angka-angka kuadrat 1 kuadrat 3 kuadrat 5 kuadrat Nah jadi kalau kita lihat nih pola bilangan sih satunya ini adalah 135 ya kan nahbilangan 1 dikali mainkan termasuk bilangan ganjil pada bilangan ganjil terdapat aturan pembentukannya yaitu UN = 2 n min 1 ini adalah rumus untuk pola ganjil adalah ganjil ya kan ini kita dapat dari sih polanya S1 S2 S3 ya kan jadi karena rumus pola ganjil nya 2 n min 1 maka SN nya ini rumusnya menjadi 2 min 1 kuadrat nanti dari rumah sini akan ketemu angka-angka ini juga nah sekarang kita coba hitung ya jumlah bola hingga pola ke-100 Oh berarti di sini kita hitung dulu sih 100 nya 100 = 2 dikali 100 dikurang 1 dikuadratkansama dengan 2 dikali 100 kan 200 dikurang 1 kuadrat = 199 kuadrat maka adalah 39601 bola ini adalah S100 nya karena kita udah dapat 100 sekarang kita Tentukan banyak bola pada pola ke-n sekarang kita lihat kalau pola kayaknya kan tadi bentuknya 18 16 8 ini 16 dan 1 ini bisa kita tulis menjadi 1,3 kuadrat dikurang 1 kuadrat koma 5 kuadrat dikurang 3 kuadrat Nah kalau kita lihat disini satunya sama dengan S1 di sini U2= F 2 dikurang x 13 nya = 3 dikurang S2 nah disini kita bisa tarik kesimpulan untuk dapat 100 kita harus tahu S100 dikurang S99 Nah dari sini kita akan gunakan rumus sih SN lagi tadi ini jadi di sini bisa kita tulis 2 dikali 100 min 1 kuadrat dikurang 2 dikali 99 dikurang 1 kuadrat = 199 kuadrat min 197 kuadrat. Nah ini kita harus ingat lagi nih kita punyaHitung bilangan kalau aquadrat min b kuadrat berarti bisa ditulis menjadi seperti ini a ditambah b. A dikurang B angka ini bisa kita kerjakan seperti itu sehingga angka angkanya menjadi 199 + 197 dikali 199 dikurang 197 = 396 * 2 = 792 bola nah ini adalah jawaban yang a ini adalah jawaban yang kita udah dapat semua ya 100 nya adalah 792 bola dan 100 nya adalah 39601 bola Oke sudah selesai sampai jumpa lagi pada peta selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Contoh1.9. Misalkan ada 3 bola yang terdiri atas 1 bola berwarna kuning JJ J I II dan 2 bola berwarna merah. Jika bola diambil dan dipindah satu persatu, maka banyaknya urutan yang bisa terjadi dapat dihitung sebagai berikut. Misalkan ke 35 dari 460 tiga bola itu adalah m1 , m2 , k. Jika semua bola berbeda warna (m1 6= m2 ),maka Cari Halaman
egiatan K Ayo Kita Amati Amati pola berikut Pola ke-1 Pola ke-2 Pola ke-3 Pola ke-4 Jika susunan bola diteruskan dengan pola ke-n, dengan n adalah suatu bilangan bulat positif, tentukan a. Banyak bola berwarna biru pada pola ke-n Un b. Banyak bola berwarna biru pada pola ke-10 U10 c. Banyak bola berwarna biru pada pola Penyelesaian Alternatif Untuk melihat banyak bola pada susunan ke-9 mari amati ilustrasi berikut. perhatikan banyaknya lingkaran yang berwarna biru adalah sesetengah bagian dari bola yang disusun menjadi persegi panjang. Pola ke-1 2 3 4 5 1 2 3 4 Pola ke-2 Pola ke-3 Pola ke-4 1 1 = ×1× 2 2 1 3 = × 2 × 3 2 1 6 = × 3× 4 2 1 10 = 4 5 2× × Dengan memperhatikan pola di atas kita bisa membuat pola ke-n adalah … … … … n + 1 n Pola ke-n 1 = × × +1 2 n U n n Pola di samping dinamakan pola bilangan segitiga. Dengan menggunakan rumus pola yang sudah ditemukan di atas, kita dapat menentukan b. Pola ke-10U10 = 1 2 × 10 × 11 = 55 c. Pola 1 2 × × = Dengan memperhatikan pola susunan bola di atas, tentukan a. Banyak bola pada pola ke-n Un b. Jumlah bola hingga pola ke-n Sn Penyelesaian Alternatif a. Pola ke-1 1 = 2 × 1 – 1 Pola ke-2 3 = 2 × 2 – 1 Pola ke-3 5 = 2 × 3 – 1 Pola ke-4 7 = 2 × 4 – 1 Dengan memperhatikan pola tersebut, kita bisa simpulkan bahwa Pola ke-n Un – 2 × n – 1 Pola di atas disebut pola bilangan ganjil b. Perhatikan pola bola-bola yang dijumlahkan pada pola bilangan ganjil. Bola-bola yang dijumlahkan tersebut dapat disusun ulang menjadi bentuk persegi sebagai berikut. Contoh Pola susunan bilangan yang membentuk persegi tersebut dinamakan pola bilangan persegi. Dengan memperhatikan susunan bola tersebut dapat kita simpulkan bahwa penjumlahan hingga pola ke-n adalah Sn = n2 Dengan kata lain 1 + 3 + 5 + 7 + … + 2 × n – 1 = n2 Contoh Tentukan hasil penjumlahan pola bilangan persegi hingga pola ke-n. 12 + 22 + 32 + 42 + … + n2 = ? Sebelum menentukan jumlah pola bilangan persegi hingga pola ke-n, kita akan melihat empat pola awal dari penjumlahan pola bilangan persegi. Sn bermakna jumlah hingga pola ke-n, dengan n adalah suatu bilangan bulat positif. 1 = 12 3 × 1 = 1 × 3 3 = 2 × 1 + 1 3 × S1 = 1 × 2 × 1 + 1 3 × S1 = 1×1× 2 × 2 ×1 +1 2       … … … … n n … 5 = 12 + 22 3 × 5 = 5 × 3 5 = 2 × 2 + 1 3 × S2 = 1 + 2 × 2 × 2 × 1 3 × S2 = 3 × 2 × 2 + 1 3 × S2 = 1 × 2 × 3 × 2 ×1 +1 2       14 = 12 + 22 + 32 6 = 1+ 2+ 3 9 = 2× 4+ 1 10 = 1 + 2 + 3 + 4 3 × 30 = 10 × 9 3 × S4 = 1 + 2 + 3 + 4 × 2 × 4 × 1 3 × S4 = 10 × 2 × 4 + 1 3 × S4 = 1× 4 × 5 × 2 × 4 +1 2       3 × 14 = 6 × 7 7 = 2 × 3 + 1 3 × S3 = 1 + 2 + 3 × 2 × 3 × 1 3 × S3 = 6 × 2 × 3 + 1 3 × S3 = 1 × 3× 4 × 2 × 3 +1 2       Ayo Kita Amati Mari amati keempat pola yang sudah ditemukan 3 × S1 = 1×1× 2 × 2 ×1 +1 2       3 × S2 = 1× 2 × 3 × 2 ×1 +1 2       3 × S3 = 1× 3× 4 × 2 × 3 +1 2       3 × S4 = 1× 4 × 5 × 2 × 4 +1 2       Dari empat pola di atas, kita bisa menggeneralisasi sebagai berikut 3 × Sn = 1 1 2 1 2× × +n n × × +n       3 × Sn = 1 1 2 1 2× × + × × +n n n Sn = 1 1 2 1 6× × + × × +n n n Jadi dapat kita simpulkan 12 + 22 + 32 + 42 + … + n2 = 1 6 × n × n + 1 × 2 × n + 1 Ayo Kita Bernalar 1. Perhatikan pola berikut 2. Perhatikan pola berikut. Tentukan banyak bola pada pola ke-n, untuk n bilangan bulat positif 3. Perhatikan susunan bilangan berikut. Susunan bilangan berikut dinamakan pola bilangan pascal, karena ditemukan oleh Blaise Pascal. Bilangan di baris ke-2 adalah hasil penjumlahan dari dua bilangan pada baris ke-1. Tentukan jumlah bilangan pada baris ke-n pada pola bilangan pascal berikut. 1 1 1 Baris ke-1 1 2 1 Baris ke-2 1 3 3 1 Baris ke-3 1 4 6 4 1 Baris ke-4 1 5 10 10 5 1 Baris ke-5 4. Perhatikan bilangan-bilangan yang dibatasi oleh garis merah berikut. 1 2 3 4 5 6 2 4 6 8 10 12 3 6 9 12 15 18 4 8 12 16 20 24 5 10 15 20 25 30 6 12 18 24 30 36 Jika pola bilangan tersebut diteruskan hingga n, untuk n bilangan bulat positif, tentukan a. Jumlah bilangan pada pola ke-n. b. Jumlah bilangan hingga pola ke-n. Latihan ! ?! ? 1. Tentukan banyak lingkaran pada pola ke-100 pada pola berikut. 2. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif. 3. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif. 4. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif.. Ayo Kita Berbagi Presentasikan jawaban kalian di depan kelas. Bandingkan dengan jawaban teman kalian. 5. Perhatikan pola bilangan berikut. 1 1 1 , , , 2 6 12 … a. Nyatakan ilustrasi dari pola tersebut b. Tentukan pola ke-n, untuk sebarang n bilangan bulat positif. 6. Dengan memperhatikan bola-bola yang dibatasi garis merah, tentukan a. Banyak bola pada pola ke-100 b. Jumlah bola hingga pola ke -100 7. Masing-masing segitiga berikut terbentuk dari 3 stik. Dengan memperhatikan pola berikut, tentukan banyak stik pada pola ke-10, 100, dan ke-n, untuk sebarang n bilangan bulat positif. 8. Dengan memperhatikan pola berikut, tentukan 1 1 1 + + 2 6 12+ … + pola ke-n a. Tiga pola berikutnya b. Pola bilangan ke-n. Untuk sebarang n bilangan bulat positif Lakukan permainan berikut bersama dengan teman sebangku kalian. Aturan permainannya sebagai berikut 1. Dua siswa secara bergantian menyebutkan bilangan antara 1 sampai 6. 2. Bilangan yang disebutkan tersebut dijumlahkan terus hingga mendaptkan hasil 30. 3. Pemain yang mencapai hasil 30 lebih dulu dikatakan sebagai pemenang permainan tersebut. Carilah trik agar selalu menang saat memainkan permainan ini. Jelaskan dalam bentuk laporan tertulis. T ugas P rojek 1 Setelah mengikuti rangkaian kegiatan 1 hingga 3, mari membuat rangkuman materi yang telah kalian dapatkan. Untuk membantu kalian membuat rangkuman, jawablah pertanyaan berikut. 1. Jika diketahui bilangan bulat a dan b, bagaimana kalian membandingkan bilangan tersebut? yang lebih besar dan yang lebih kecil 2. Di antara operasi penjumlahan, pengurangan, perkalian, dan pembagian, manakah yang hasil operasinya tertutup menghasilkan bilangan bulat juga? Jelaskan. 3. Sebutkan ciri-ciri bilangan bulat a yang merupakan Kelipatan Persekutuan Terkecil dari dua bilangan bulat atau lebih. 4. Sebutkan ciri-ciri bilangan bulat a yang merupakan Faktor Persekutuan Terbesar dari dua bilangan bulat atau lebih. 5. Jika diketahui bilangan bulat a, b, c, dan d, dengan a, b, c, dan d ≠ 0, Bagaimana cara kalian menentukan hasil dari a. b a + d c b. b a − d c c. b a × d c d. b a ÷ d c 6. Apakah yang dimaksud bilangan rasional? U ji K ompetensi + =+ ? ? 1 1. Tentukan operasi berikut menggunakan garis bilangan dan tentukan hasilnya a. −9 + 6 − 5 b. 12 − 10 − 4 c. −9 + 8 − 7 + 6 2. Tentukan operasi berikut menggunakan garis bilangan dan tentukan hasilnya a. −7 × 9 b. 6 × −7 c. −3 × −9 3. Nyatakan operasi yang ditunjukkan pada garis bilangan berikut dan tentukan hasilnya. a. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 b. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 c. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4. Nyatakan operasi yang ditunjukkan pada garis bilangan berikut dan tentukan hasilnya. a. -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 b. -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 c. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 5. Tentukan hasil dari a. 15 + 5 × −6 b. 12 × −7 + −16 ÷ −2 c. −15 ÷ −3 − 7 × −4 6. Tentukan hasil dari tanpa menghitung satu persatu a. 2 + 4 + 6 + 8 + 10 + … + 100 b. − 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 − … + 100 7. Pak Amin mempunyai 20 ekor ayam, 16 ekor itik, dan 12 ekor angsa. Pak Amin akan memasukkan ternak ini ke dalam beberapa kandang dengan jumlah masing-masing ternak dalam tiap kandang sama. Berapa kandang yang harus dibuat Pak Amin? 8. Bu guru mempunyai 18 kue, 24 kerupuk dan 30 permen. Makanan itu akan dibagikan kepada sejumlah anak dengan jumlah yang sama untuk masing-masing makanan yang diterima tiap anak. Berapa maksimal anak yang dapat menerima ketiga jenis makanan itu? 9. Toko buah “Harum Manis” menerima 3 peti buah. Peti pertama berisi 144 buah apel, 84 buah mangga, dan 72 buah jeruk. Buah itu akan disusun di dalam lemari buah besar. Banyak buah dalam tiap susunan harus sama. a. Berapa banyak susunan buah yang bisa masuk ke dalam lemari buah? b. Berapa banyak buah dari ketiga jenis buah pada setiap susunan? 10. Ediaman akan memagari kebun bunganya. Untuk itu, ia memerlukan tiang-tiang yang tingginya 1 2 1 m. Berapa banyak tiang yang bisa dibuat dari sebatang besi yang panjangnya 12 m? 11. Pada akhir hidupnya, Pak Usman meninggalkan warisan harta emas batangan seberat 5 2 2 kg. Pak usman memiliki 3 orang anak, akan membagi warisan tersebut dengan bagian yang sama. Berapa gram emas yang diperoleh masing-masing anak? 12. Seorang tukang ingin memasang plafon rumah dengan bahan triplek. Ukuran luas satu triplek adalah 5 m2. Triplek besar dipotong-potong pengganti asbes berbentuk persegi dengan panjang sisi 2 1 m. Berapa banyak asbes yang dapat dibuat dari satu triplek besar? 13. Untuk memperingati hari kemerdekaan 17 Agustus, diadakan pertandingan lompat jauh bagi anak-anak umur 12 tahun ke bawah. Dari hasil pertandingan diperoleh juara I mampu melompat sejauh 1 3 1 m dan juara II hanya mampu mencapai jarak 4 3 dari lompatan juara I. Berapa meter hasil lompatan juara II ? 14. Santi mempunyai 2 roti. Tiga perempat bagian dari dua roti itu di beri kepada adiknya. Berapa bagian sisa roti pada Santi? 15. Terdapat enam buah gelas akan diisi air sampai penuh. Ternyata setiap gelas hanya dapat memuat 1 10 liter air. Berapa liter air yang dibutuhkan untuk mengisi keenam 16. Seorang penjahit menerima 7 m kain bakal untuk dijadikan tiga buah celana. Tiap celana berukuran sama. Berapa meter kain yang dibutuhkan untuk satu kain celana ? 17. Bu Vera memiliki 5 potong roti. Roti tersebut akan dibagikan pada 3 orang anaknya dan tiap anak mendapat bagian yang sama. Berapa potong yang diperoleh tiap anak ? 18. Robi mempunyai 27 kelereng. Sebanyak 5 9 dari kelereng itu diberikan kepada Rudi. Berapa banyak kelereng yang diberikan kepada Rudi? Berapa sisa kelereng Robi? 19. Dalam lomba tolak peluru, Andi melempar sejauh 10 × 1 3 m, sedangkan Budi melempar sejauh 10 × 2 5 m. Siapakah antara kedua anak itu yang melempar lebih jauh? Jelaskan. 20. Mana yang lebih banyak 3 4 dari 5 ton atau 5 6 dari 5 ton? Jelaskan. 21. Hasil panen gandum Bu Broto adalah 15 ton per tahun. Bersamaan dengan musim panen, Bu Broto harus membayar uang kuliah anaknya. Untuk Bu Broto harus menjual 2 3 dari gandum miliknya. Berapa ton sisa gandum Bu Broto? 22. Bu guru mempunyai 18 kue, 24 kerupuk dan 30 permen. Makanan itu akan dibagikan kepada sejumlah anak dengan jumlah yang sama untuk masing-masing makanan yang diterima tiap anak. Berapa maksimal anak yang dapat menerima ketiga jenis makanan itu? 23. Pada suatu hari Domu, Beny, dan Mangara bersamaan memotong rambutnya pada seorang tukang cukur. Domu memotong rambutnya setiap 20 hari di tempat itu. Beni mencukur rambutnya setiap 25 hari di tempat itu pula. Sedangkan Mangara mencukur rambutnya setiap 30 hari. Setiap berapa bulan mereka bersamaan potong rambut pada tukang cukur itu?. 24. Agung melakukan perjalanan mudik dari kota Semarang ke kota Yogyakarta. Di perjalanan pengendara tersebut mengisi bensin tiga kali, yaitu 5 8 liter, 5 7 liter, dan 5 12 liter. Berapa liter bensin yang telah diisi oleh pengendara tersebut selama perjalanan mudik? 25. Seorang penggali sumur setiap 2 2 1 jam dapat menggali sedalam 2 3 2 m. Berapa dalam sumur tergali, jika penggali bekerja 2 1 jam ? 26. Seorang Ibu hamil membeli 2 meter kain katun untuk dijadikan pakaian bayi. Satu pakaian bayi membutuhkan 4 1 m kain katun. Berapa banyak pakaian bayi yang Himpunan Memahami pengertian himpunan, himpunan bagian, komplemen himpunan, operasi himpunan dan menunjukkan contoh dan bukan contoh K D ompetensi asar • Himpunan bagian • Komplemen himpunan • Operasi himpunan K ata Kunci 1. Menyatakan masalah sehari-hari dalam bentuk himpunan dan mendata anggotanya. 2. Menyebutkan anggota. dan bukan anggota himpunan. 3. Mengetahui macam-macam himpunan. 4. Memahi relasi himpuanan dan operasi himpunan. P B engalaman
Sementaraitu sepak bola profesional baik pro dan perguruan tinggi olahraga taruhan ekspansi ke negara bagian lain West Virginia dan Delaware. Caesars Sementara menyediakan platform menawarkan pilihan bagi mereka yang penggemar game dan konten. Tidak untuk Royal flush adalah 6 kali yang dibatasi dari permainan bonus dapat dimulai. Perjudian
Berdasarkan gambar pada soal, maka dapat di-ilustrasikan sebagai berikut Terlihat pada gambar Pola bilangan sebagai berikut Terlihat bahwa, terbentuk pola bilangan ganjil, dimana barisan yang terbentuk dimulai dari pola ke-2 adalah 1,3,5,..... Adapun rumus pola barisan bilangan ganjil adalah . Sehingga pola ke- untuk sebarang bilangan bulat positif adalah Diatas telah dijelaskan bagaimana banyak bola yang terbentuk tiap pola ke-, perhatikan skema berikut untuk mengetahui pola dari jumlah bola hingga pola ke-. Jika , dan rumus pola barisan bilangan ganjil adalah maka jumlah bola hingga pola ke- Maka, jumlah bola hingga pola ke-100 Jadi, jumlah bolahingga pola ke-100 adalah buah bola
Raket yang terbuat dari plastic dapat digunakan untuk memukul shuttlecock dan bola tennis : Anak usia 6 -12 Tahun atau lebih : Memukul shuttlecock dan bola tenis mini. Contoh berbagai aktifitas penggunaan Raket TONIS No Nama Gerakan dan Uraian Gambar 1 Timang Shuttlecock / bola lunak 1.1 Bola/cock dipukul pelan berulang-ulang ke atas statis.

Dengan memperhatikan bola-bola yang dibatasi garis merah Tentukan bola hingga pola ke-100 Jawaban Terlihat pola pada gambar Pola ke 1 U₁ = 1 bola => yang di tengah pusat Jumlah bola hingga pola 1 S₁ = 1 Pola ke 2 U₂ = 8 bola => yang mengelililing bola pada pola 1 Jumlah bola hingga pola 2 S₂ = 9 Pola ke 2 U₃ = 16 bola => yang mengelilingi bola pada pola 2 Jumlah bola hingga pola 3 S₃ = 25 Jadi dari jumlah bola hingga pola ke n S₁, S₂, S₃, … 1, 9, 25, …. 1², 3², 5², …. => bilangan ganjil dikuadratkan Pola bilangan ganjil 1, 3, 5, 7, ….. dengan rumus suku ke n barisan aritmatika a = 1, b = 3 – 1 = 2 Un = a + n – 1b Un = 1 + n – 12 Un = 1 + 2n – 2 Un = 2n – 1 Jadi rumus jumlah bola hingga pola ke n adalah Sn = 2n – 1² Jadi jawaban yang bagian b Jumlah bola hingga pola ke 100 = S₁₀₀ = 2100 – 1² = 200 – 1² = 199² = bola Lalu untuk menentukan banyak bola pada pola ke n 1, 8, 16, …. 1, 9 – 1, 25 – 9, …. 1, 3² – 1², 5² – 3², …. U₁ = S₁ = 1 U₂ = S₂ – S₁ = 3² – 1² = 9 – 1 = 8 U₃ = S₃ – S₂ = 5² – 3² = 25 – 9 = 16 Jadi jawaban bagian a Banyak bola pada pola ke 100 U₁₀₀ = S₁₀₀ – S₉₉ U₁₀₀ = 2100 – 1² – 299 – 1² U₁₀₀ = 199² – 197² U₁₀₀ = 199 + 197199 – 197 U₁₀₀ = 396 2 U₁₀₀ = 792 bola Ingat a² – b² = a + ba – b Dengan memerhatikan bola-bola yang dibatasi garis merah tentukan banyak bola pada pola ke-100 dan jumlah bola hingga pola ke-100, pembahasan kunci jawaban Matematika kelas 8 halaman 30 31 32 33 Ayo Kita Berlatih Semester 1 BAB 1, Pada buku matematika kelas VIII Kurikulum 2013 Revisi 2017. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal Perhatikan Pola Bilangan Berikut 1/2 1/6 1/12. Sudah mengerjakannya kan? Jika belum, silahkan buka link tersebut! Ayo Kita Berlatih 11. Dengan memerhatikan bola-bola yang dibatasi garis merah, tentukan a. banyak bola pada pola ke-100. b. jumlah bola hingga pola ke-100. Jawaban a Banyak bola pada pola ke-100 adalah 792 bola. b Jumlah bola hingga pola ke-100 adalah bola. Pembahasan Terlihat pola pada gambar Pola ke 1 U₁ = 1 bola => yang di tengah pusat Jumlah bola hingga pola 1 S₁ = 1 Pola ke 2 U₂ = 8 bola => yang mengelililing bola pada pola 1 Jumlah bola hingga pola 2 S₂ = 9 Pola ke 2 U₃ = 16 bola => yang mengelilingi bola pada pola 2 Jumlah bola hingga pola 3 S₃ = 25 Jadi dari jumlah bola hingga pola ke n S₁, S₂, S₃, … 1, 9, 25, …. 1², 3², 5², …. => bilangan ganjil dikuadratkan Pola bilangan ganjil 1, 3, 5, 7, ….. dengan rumus suku ke n barisan aritmatika a = 1, b = 3 – 1 = 2 Un = a + n – 1b Un = 1 + n – 12 Un = 1 + 2n – 2 Un = 2n – 1 Jadi rumus jumlah bola hingga pola ke n adalah Sn = 2n – 1² Jadi jawaban yang bagian b Jumlah bola hingga pola ke 100 = S₁₀₀ = 2100 – 1² = 200 – 1² = 199² = bola Lalu untuk menentukan banyak bola pada pola ke n 1, 8, 16, …. 1, 9 – 1, 25 – 9, …. 1, 3² – 1², 5² – 3², …. U₁ = S₁ = 1 U₂ = S₂ – S₁ = 3² – 1² = 9 – 1 = 8 U₃ = S₃ – S₂ = 5² – 3² = 25 – 9 = 16 Jadi jawaban bagian a Banyak bola pada pola ke 100 U₁₀₀ = S₁₀₀ – S₉₉ U₁₀₀ = 2100 – 1² – 299 – 1² U₁₀₀ = 199² – 197² U₁₀₀ = 199 + 197199 – 197 U₁₀₀ = 396 2 U₁₀₀ = 792 bola Ingat a² – b² = a + ba – b 12. Tiap-tiap segitiga berikut terbentuk dari 3 stik. Dengan memerhatikan pola berikut, tentukan banyak stik pada pola ke-10, ke-100, dan ke-n, untuk sebarang n bilangan bulat positif. 13. Dengan memerhatikan pola berikut a. Tentukan tiga pola berikutnya. b. Tentukan pola bilangan ke-n, untuk sebarang n bilangan bulat positif. c. Tentukan jumlah hinggan bilangan ke-n, untuk sebarang n bilangan bulat positif. Jawaban, buka disini Tiap-tiap Segitiga Berikut Terbentuk Dari 3 Stik Dengan Memerhatikan Pola Berikut Demikian pembahasan kunci jawaban Matematika kelas 8 halaman 30 sampai 33 semester 1 Ayo Kita Berlatih pada buku kurikulum 2013 revisi 2017. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar! Berdasarkan gambar pada soal, maka dapat di-ilustrasikan sebagai berikut Terlihat pada gambar Pola bilangan sebagai berikut Terlihat bahwa, terbentuk pola bilangan ganjil, dimana barisan yang terbentuk dimulai dari pola ke-2 adalah 1,3,5,..... Adapun rumus pola barisan bilangan ganjil adalah . Sehingga pola ke- untuk sebarang bilangan bulat positif adalah Diatas telah dijelaskan bagaimana banyak bola yang terbentuk tiap pola ke-, perhatikan skema berikut untuk mengetahui pola dari jumlah bola hingga pola ke-. Jika , dan rumus pola barisan bilangan ganjil adalah maka jumlah bola hingga pola ke- Maka, jumlah bola hingga pola ke-100 Jadi, jumlah bolahingga pola ke-100 adalah buah bola

Meskikelihatannya sama, namun sepakbola dan futsal memainkan bola yang berbeda. Berikut di bawah ini adalah keterangan perbedaan bola antara yang digunakan dalam sepakbola dan futsal: Ukuran bola yang digunakan dalam sepak bola memiliki keliling 68-71 cm, sedangkan pada bola futsal ukuran kelilingnya adalah 62-64 cm.
Mahasiswa/Alumni Universitas Airlangga09 Januari 2022 0901Halo Edwin, kakak bantu menjawab ya. Jawaban 432 Konsep Pola Bilangan Pola bilangan adalah suatu susunan bilangan yang membentuk pola tertentu sesuai dengan rumus pola yang ditentukan. Pembahasan Pola bilangan yang dibatasi pada kotak merah adalah U1 = 1 U2 = 4 + 4 x 1 U3 = 4 + 4 x 3 Berdasarkan pola diatas, terbentuk pola bilangan ganjil, dimana barisan yang terbentuk dimulai dari pola ke-2 adalah 1,3,5,..... Rumus pola barisan bilangan ganjil adalah Un = 2n - 1, sehingga pola suku ke-n adalah Un = 4 + 42n - 1. Berdasarkan rumus pola suku ke-n, maka pole ke-54 adalah U54 = 4 + 4254 - 1 = 4 + 4108 - 1 = 4 + 4107 = 4 + 428 = 432 Jadi, banyak lingkaran pada pola 54 adalah 432. Semoga membantu ya. KasinoOnline Terbaik USA 2021 – Temukan Situs Kasino Teratas. Sementara banyak kasino akan menawarkan sejumlah varian video poker dan blackjack dek tunggal Vegas. Pada hari Senin poker online di NY pastikan kemenangan adalah angka yang sangat rendah. Biasanya rendah dengan menawarkan sedikit no. Sebuah pernyataan setelah kasino memverifikasi PembahasanBerdasarkan gambar pada soal, maka dapat di-ilustrasikan sebagai berikut Terlihat pada gambar Apabila dilanjutkan akan didapatkan pola 4 yaitu Pola bilangan sebagai berikut Terlihat bahwa, terbentuk pola bilangan ganjil , dimana barisan yang terbentuk dimulai dari pola ke-2 adalah 1,3,5,..... Adapun rumus pola barisan bilangan ganjil adalah . Sehingga pola ke- untuk sebarang bilangan bulat positif adalah Banyak bola pada pola ke-100. Jadi, banyak bola pada pola ke-100 adalah 800 buah gambar pada soal, maka dapat di-ilustrasikan sebagai berikut Terlihat pada gambar Apabila dilanjutkan akan didapatkan pola 4 yaitu Pola bilangan sebagai berikut Terlihat bahwa, terbentuk pola bilangan ganjil, dimana barisan yang terbentuk dimulai dari pola ke-2 adalah 1,3,5,..... Adapun rumus pola barisan bilangan ganjil adalah . Sehingga pola ke- untuk sebarang bilangan bulat positif adalah Banyak bola pada pola ke-100. Jadi, banyak bola pada pola ke-100 adalah 800 buah bola. Contoh3.3 Sebuah kotak berisi 4 bola kecil berwarna merah dan 3 berwarna putih. Dari kotak tersebut dipilih secara acak 4 buah bola. Tentukan peluang terambilnya 1 bola merah dan 3 bola putih. Penyelesaian. Misalkan A kejadian terambilnya 1 bola merah dan 3 bola putih, maka banyaknya titik sampel dalam A ada 4C1.3C3 = 4, atau n(A) = 4.

egiatan K Ayo Kita Amati Amati pola berikut Pola ke-1 Pola ke-2 Pola ke-3 Pola ke-4 Jika susunan bola diteruskan dengan pola ke-n, dengan n adalah suatu bilangan bulat positif, tentukan a. Banyak bola berwarna biru pada pola ke-n Un b. Banyak bola berwarna biru pada pola ke-10 U10 c. Banyak bola berwarna biru pada pola Penyelesaian Alternatif Untuk melihat banyak bola pada susunan ke-9 mari amati ilustrasi berikut. perhatikan banyaknya lingkaran yang berwarna biru adalah sesetengah bagian dari bola yang disusun menjadi persegi panjang. Pola ke-1 2 3 4 5 1 2 3 4 Pola ke-2 Pola ke-3 Pola ke-4 1 1 = ×1× 2 2 1 3 = × 2 × 3 2 1 6 = × 3× 4 2 1 10 = 4 5 2× × Dengan memperhatikan pola di atas kita bisa membuat pola ke-n adalah ... ... ... ... n + 1 n Pola ke-n 1 = × × +1 2 n U n n Pola di samping dinamakan pola bilangan segitiga. Dengan menggunakan rumus pola yang sudah ditemukan di atas, kita dapat menentukan b. Pola ke-10U10 = 1 2 × 10 × 11 = 55 c. Pola 1 2 × × = Dengan memperhatikan pola susunan bola di atas, tentukan a. Banyak bola pada pola ke-n Un b. Jumlah bola hingga pola ke-n Sn Penyelesaian Alternatif a. Pola ke-1 1 = 2 × 1 – 1 Pola ke-2 3 = 2 × 2 – 1 Pola ke-3 5 = 2 × 3 – 1 Pola ke-4 7 = 2 × 4 – 1 Dengan memperhatikan pola tersebut, kita bisa simpulkan bahwa Pola ke-n Un – 2 × n – 1 Pola di atas disebut pola bilangan ganjil b. Perhatikan pola bola-bola yang dijumlahkan pada pola bilangan ganjil. Bola-bola yang dijumlahkan tersebut dapat disusun ulang menjadi bentuk persegi sebagai berikut. Contoh Pola susunan bilangan yang membentuk persegi tersebut dinamakan pola bilangan persegi. Dengan memperhatikan susunan bola tersebut dapat kita simpulkan bahwa penjumlahan hingga pola ke-n adalah Sn = n2 Dengan kata lain 1 + 3 + 5 + 7 + ... + 2 × n – 1 = n2 Contoh Tentukan hasil penjumlahan pola bilangan persegi hingga pola ke-n. 12 + 22 + 32 + 42 + ... + n2 = ? Sebelum menentukan jumlah pola bilangan persegi hingga pola ke-n, kita akan melihat empat pola awal dari penjumlahan pola bilangan persegi. Sn bermakna jumlah hingga pola ke-n, dengan n adalah suatu bilangan bulat positif. 1 = 12 3 × 1 = 1 × 3 3 = 2 × 1 + 1 3 × S1 = 1 × 2 × 1 + 1 3 × S1 = 1×1× 2 × 2 ×1 +1 2       ... ... ... ... n n ... 5 = 12 + 22 3 × 5 = 5 × 3 5 = 2 × 2 + 1 3 × S2 = 1 + 2 × 2 × 2 × 1 3 × S2 = 3 × 2 × 2 + 1 3 × S2 = 1 × 2 × 3 × 2 ×1 +1 2       14 = 12 + 22 + 32 6 = 1+ 2+ 3 9 = 2× 4+ 1 10 = 1 + 2 + 3 + 4 3 × 30 = 10 × 9 3 × S4 = 1 + 2 + 3 + 4 × 2 × 4 × 1 3 × S4 = 10 × 2 × 4 + 1 3 × S4 = 1× 4 × 5 × 2 × 4 +1 2       3 × 14 = 6 × 7 7 = 2 × 3 + 1 3 × S3 = 1 + 2 + 3 × 2 × 3 × 1 3 × S3 = 6 × 2 × 3 + 1 3 × S3 = 1 × 3× 4 × 2 × 3 +1 2      Ayo Kita Amati Mari amati keempat pola yang sudah ditemukan 3 × S1 = 1×1× 2 × 2 ×1 +1 2       3 × S2 = 1× 2 × 3 × 2 ×1 +1 2       3 × S3 = 1× 3× 4 × 2 × 3 +1 2       3 × S4 = 1× 4 × 5 × 2 × 4 +1 2       Dari empat pola di atas, kita bisa menggeneralisasi sebagai berikut 3 × Sn = 1 1 2 1 2× × +n n × × +n      3 × Sn = 1 1 2 1 2× × + × × +n n n Sn = 1 1 2 1 6× × + × × +n n n Jadi dapat kita simpulkan 12 + 22 + 32 + 42 + ... + n2 = 1 6 × n × n + 1 × 2 × n + 1 Ayo Kita Bernalar 1. Perhatikan pola berikut 2. Perhatikan pola berikut. Tentukan banyak bola pada pola ke-n, untuk n bilangan bulat positif 3. Perhatikan susunan bilangan berikut. Susunan bilangan berikut dinamakan pola bilangan pascal, karena ditemukan oleh Blaise Pascal. Bilangan di baris ke-2 adalah hasil penjumlahan dari dua bilangan pada baris ke-1. Tentukan jumlah bilangan pada baris ke-n pada pola bilangan pascal berikut. 1 1 1 Baris ke-1 1 2 1 Baris ke-2 1 3 3 1 Baris ke-3 1 4 6 4 1 Baris ke-4 1 5 10 10 5 1 Baris ke-5 4. Perhatikan bilangan-bilangan yang dibatasi oleh garis merah berikut. 1 2 3 4 5 6 2 4 6 8 10 12 3 6 9 12 15 18 4 8 12 16 20 24 5 10 15 20 25 30 6 12 18 24 30 36 Jika pola bilangan tersebut diteruskan hingga n, untuk n bilangan bulat positif, tentukan a. Jumlah bilangan pada pola ke-n. b. Jumlah bilangan hingga pola ke-n. Latihan ! ?! ? 1. Tentukan banyak lingkaran pada pola ke-100 pada pola berikut. 2. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif. 3. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif. 4. Tentukan banyak lingkaran pada pola ke-10, 100, n pada pola berikut, untuk sebarang n bilangan bulat positif.. Ayo Kita Berbagi Presentasikan jawaban kalian di depan kelas. Bandingkan dengan jawaban teman kalian. 5. Perhatikan pola bilangan berikut. 1 1 1 , , , 2 6 12 … a. Nyatakan ilustrasi dari pola tersebut b. Tentukan pola ke-n, untuk sebarang n bilangan bulat positif. 6. Dengan memperhatikan bola-bola yang dibatasi garis merah, tentukan a. Banyak bola pada pola ke-100 b. Jumlah bola hingga pola ke -100 7. Masing-masing segitiga berikut terbentuk dari 3 stik. Dengan memperhatikan pola berikut, tentukan banyak stik pada pola ke-10, 100, dan ke-n, untuk sebarang n bilangan bulat positif. 8. Dengan memperhatikan pola berikut, tentukan 1 1 1 + + 2 6 12+ ... + pola ke-n a. Tiga pola berikutnya b. Pola bilangan ke-n. Untuk sebarang n bilangan bulat positif Lakukan permainan berikut bersama dengan teman sebangku kalian. Aturan permainannya sebagai berikut 1. Dua siswa secara bergantian menyebutkan bilangan antara 1 sampai 6. 2. Bilangan yang disebutkan tersebut dijumlahkan terus hingga mendaptkan hasil 30. 3. Pemain yang mencapai hasil 30 lebih dulu dikatakan sebagai pemenang permainan tersebut. Carilah trik agar selalu menang saat memainkan permainan ini. Jelaskan dalam bentuk laporan tertulis. Tugas Projek1 Setelah mengikuti rangkaian kegiatan 1 hingga 3, mari membuat rangkuman materi yang telah kalian dapatkan. Untuk membantu kalian membuat rangkuman, jawablah pertanyaan berikut. 1. Jika diketahui bilangan bulat a dan b, bagaimana kalian membandingkan bilangan tersebut? yang lebih besar dan yang lebih kecil 2. Di antara operasi penjumlahan, pengurangan, perkalian, dan pembagian, manakah yang hasil operasinya tertutup menghasilkan bilangan bulat juga? Jelaskan. 3. Sebutkan ciri-ciri bilangan bulat a yang merupakan Kelipatan Persekutuan Terkecil dari dua bilangan bulat atau lebih. 4. Sebutkan ciri-ciri bilangan bulat a yang merupakan Faktor Persekutuan Terbesar dari dua bilangan bulat atau lebih. 5. Jika diketahui bilangan bulat a, b, c, dan d, dengan a, b, c, dan d ≠ 0, Bagaimana cara kalian menentukan hasil dari a. b a + d c b. b a − d c c. b a × d c d. b a ÷ d c 6. Apakah yang dimaksud bilangan rasional? UjiKompetensi + =+ ? ? 1 1. Tentukan operasi berikut menggunakan garis bilangan dan tentukan hasilnya a. −9 + 6 − 5 b. 12 − 10 − 4 c. −9 + 8 − 7 + 6 2. Tentukan operasi berikut menggunakan garis bilangan dan tentukan hasilnya a. −7 × 9 b. 6 × −7 c. −3 × −9 3. Nyatakan operasi yang ditunjukkan pada garis bilangan berikut dan tentukan hasilnya. a. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 b. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 c. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4. Nyatakan operasi yang ditunjukkan pada garis bilangan berikut dan tentukan hasilnya. a. -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 b. -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 c. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 5. Tentukan hasil dari a. 15 + 5 × −6 b. 12 × −7 + −16 ÷ −2 c. −15 ÷ −3 − 7 × −4 6. Tentukan hasil dari tanpa menghitung satu persatu a. 2 + 4 + 6 + 8 + 10 + ... + 100 b. − 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 − ... + 100 7. Pak Amin mempunyai 20 ekor ayam, 16 ekor itik, dan 12 ekor angsa. Pak Amin akan memasukkan ternak ini ke dalam beberapa kandang dengan jumlah masing-masing ternak dalam tiap kandang sama. Berapa kandang yang harus dibuat Pak Amin? 8. Bu guru mempunyai 18 kue, 24 kerupuk dan 30 permen. Makanan itu akan dibagikan kepada sejumlah anak dengan jumlah yang sama untuk masing-masing makanan yang diterima tiap anak. Berapa maksimal anak yang dapat menerima ketiga jenis makanan itu? 9. Toko buah “Harum Manis” menerima 3 peti buah. Peti pertama berisi 144 buah apel, 84 buah mangga, dan 72 buah jeruk. Buah itu akan disusun di dalam lemari buah besar. Banyak buah dalam tiap susunan harus sama. a. Berapa banyak susunan buah yang bisa masuk ke dalam lemari buah? b. Berapa banyak buah dari ketiga jenis buah pada setiap susunan? 10. Ediaman akan memagari kebun bunganya. Untuk itu, ia memerlukan tiang-tiang yang tingginya 1 2 1 m. Berapa banyak tiang yang bisa dibuat dari sebatang besi yang panjangnya 12 m? 11. Pada akhir hidupnya, Pak Usman meninggalkan warisan harta emas batangan seberat 5 2 2 kg. Pak usman memiliki 3 orang anak, akan membagi warisan tersebut dengan bagian yang sama. Berapa gram emas yang diperoleh masing-masing anak? 12. Seorang tukang ingin memasang plafon rumah dengan bahan triplek. Ukuran luas satu triplek adalah 5 m2. Triplek besar dipotong-potong pengganti asbes berbentuk persegi dengan panjang sisi 2 1 m. Berapa banyak asbes yang dapat dibuat dari satu triplek besar? 13. Untuk memperingati hari kemerdekaan 17 Agustus, diadakan pertandingan lompat jauh bagi anak-anak umur 12 tahun ke bawah. Dari hasil pertandingan diperoleh juara I mampu melompat sejauh 1 3 1 m dan juara II hanya mampu mencapai jarak 4 3 dari lompatan juara I. Berapa meter hasil lompatan juara II ? 14. Santi mempunyai 2 roti. Tiga perempat bagian dari dua roti itu di beri kepada adiknya. Berapa bagian sisa roti pada Santi? 15. Terdapat enam buah gelas akan diisi air sampai penuh. Ternyata setiap gelas hanya dapat memuat 1 10 liter air. Berapa liter air yang dibutuhkan untuk mengisi keenam 16. Seorang penjahit menerima 7 m kain bakal untuk dijadikan tiga buah celana. Tiap celana berukuran sama. Berapa meter kain yang dibutuhkan untuk satu kain celana ? 17. Bu Vera memiliki 5 potong roti. Roti tersebut akan dibagikan pada 3 orang anaknya dan tiap anak mendapat bagian yang sama. Berapa potong yang diperoleh tiap anak ? 18. Robi mempunyai 27 kelereng. Sebanyak 5 9 dari kelereng itu diberikan kepada Rudi. Berapa banyak kelereng yang diberikan kepada Rudi? Berapa sisa kelereng Robi? 19. Dalam lomba tolak peluru, Andi melempar sejauh 10 × 1 3 m, sedangkan Budi melempar sejauh 10 × 2 5 m. Siapakah antara kedua anak itu yang melempar lebih jauh? Jelaskan. 20. Mana yang lebih banyak 3 4 dari 5 ton atau 5 6 dari 5 ton? Jelaskan. 21. Hasil panen gandum Bu Broto adalah 15 ton per tahun. Bersamaan dengan musim panen, Bu Broto harus membayar uang kuliah anaknya. Untuk Bu Broto harus menjual 2 3 dari gandum miliknya. Berapa ton sisa gandum Bu Broto? 22. Bu guru mempunyai 18 kue, 24 kerupuk dan 30 permen. Makanan itu akan dibagikan kepada sejumlah anak dengan jumlah yang sama untuk masing-masing makanan yang diterima tiap anak. Berapa maksimal anak yang dapat menerima ketiga jenis makanan itu? 23. Pada suatu hari Domu, Beny, dan Mangara bersamaan memotong rambutnya pada seorang tukang cukur. Domu memotong rambutnya setiap 20 hari di tempat itu. Beni mencukur rambutnya setiap 25 hari di tempat itu pula. Sedangkan Mangara mencukur rambutnya setiap 30 hari. Setiap berapa bulan mereka bersamaan potong rambut pada tukang cukur itu?. 24. Agung melakukan perjalanan mudik dari kota Semarang ke kota Yogyakarta. Di perjalanan pengendara tersebut mengisi bensin tiga kali, yaitu 5 8 liter, 5 7 liter, dan 5 12 liter. Berapa liter bensin yang telah diisi oleh pengendara tersebut selama perjalanan mudik? 25. Seorang penggali sumur setiap 2 2 1 jam dapat menggali sedalam 2 3 2 m. Berapa dalam sumur tergali, jika penggali bekerja 2 1 jam ? 26. Seorang Ibu hamil membeli 2 meter kain katun untuk dijadikan pakaian bayi. Satu pakaian bayi membutuhkan 4 1 m kain katun. Berapa banyak pakaian bayi yang Himpunan Memahami pengertian himpunan, himpunan bagian, komplemen himpunan, operasi himpunan dan menunjukkan contoh dan bukan contoh K D ompetensi asar • Himpunan bagian • Komplemen himpunan • Operasi himpunanK ata Kunci 1. Menyatakan masalah sehari-hari dalam bentuk himpunan dan mendata anggotanya. 2. Menyebutkan anggota. dan bukan anggota himpunan. 3. Mengetahui macam-macam himpunan. 4. Memahi relasi himpuanan dan operasi himpunan. P B engalaman

88saOZq.
  • 71lst26b8r.pages.dev/1
  • 71lst26b8r.pages.dev/115
  • 71lst26b8r.pages.dev/351
  • 71lst26b8r.pages.dev/32
  • 71lst26b8r.pages.dev/389
  • 71lst26b8r.pages.dev/19
  • 71lst26b8r.pages.dev/314
  • 71lst26b8r.pages.dev/61
  • 71lst26b8r.pages.dev/209
  • dengan memperhatikan bola bola yang dibatasi garis merah tentukan